3D-принтер: большой потенциал объемной печати

3D принтеры и их возможности

Если еще совсем недавно трехмерное моделирование считалось чем-то из мира фантастики, то сегодня практически любой желающий может приобрести специальное настольное устройство для печати объемных пластиковых изделий. Так что же такое 3D-принтеры, каковы их возможности, перспективы и сфера использования? Какова роль человека в создании точной копии компьютерной модели?

Отличительные особенности 3D-принтера

Трехмерным принтером называют специальное устройство, способное на основании виртуальной модели печатать объемные объекты. Если для печати в обычном принтере используют тонер, то во втором случае пользуются различными видами пластика, нейлоном, металлической пудрой, стеклянным порошком, строительными смесями и другими материалами. Основа данной технологии – послойное выращивание твердых моделей. Этот способ идеально подходит для создания предметов различной сложности: от обычных детских игрушек до всевозможных элементов, используемых, например, в протезировании.

Принцип работы данной техники:

  • создание компьютерной модели будущего объекта;
  • деление полученного шаблона на множество поперечных слоев с помощью специального ПО;
  • постепенное наращивание по направлению от основания вверх жидкого, порошкообразного, другого материала с последующим соединением (сплавлением) его в объект нужной формы.

Существует несколько технологий такой печати, отличающихся техникой работы, свойствами используемого исходного материала, используемым ПО:

  1. Экструзионная печать
    Суть этого метода заключается в воздействии экструдера на расходный материал. Он нагревает сырье до определенной температуры, затем выдавливая его через сопло, формирует изделие или его фрагменты. В роли расходников выступают различные виды полимеров.
  2. Порошковая.
    Данная технология включает:

  • струйнуйную печать, основанную на нанесении связующих материалов на тонкие слои порошка, с последующей пропиткой полимерами или воском;
  • выборочное или прямое спекание тонких слоев порошка с помощью лазера;
  • электронно-лучевое, лазерное сплавление – вместо спекания в местах соприкосновения с лазером происходит плавление порошка.
  • Ламинирование
    Этот способ позволит значительно удешевить стоимость полученных изделий, так как использует в качестве сырья бумагу, листы из тонкого металла и пластика.
  • Фотополимеризация
    Данная технология основана на использовании жидких фотополимерных смол, затвердевающих под влиянием ультрафиолетового света.
  • Применение трехмерной печати в быту

    Интересует, что можно печатать на 3D принтере? Да много чего: детские и елочные игрушки, сувенирную продукцию, чехлы для мобильных телефонов и планшетов, всевозможные механизмы для автомобилей, множество различных украшений. 3D принтеры стали незаменимыми в строительстве, медицине, пищевой промышленности, их услугами пользуются во многих дизайнерских студиях.

    Хотя данное устройство не является предметом первой необходимости, многие все же мечтают иметь его дома. Сегодня эти желания легко воплощаются в реальность, ведь на рынке есть принтеры по вполне приемлемым ценам. Помимо того, сеть наполнена массой интересных «рецептов» изготовления изделий с помощью 3D-устройства.

    Принтер поможет напечатать колпачок для обычной ручки, хозяйственные прищепки, мебельную фурнитуру, пластиковые украшения на елку, детские игрушки, интересные маски. Любой владелец мобильного телефона или планшета не откажется от идеи изготовить оригинальный защитный чехол, ведь сделать его с помощью принтера не составит особых трудностей. Если вы являетесь почитателем игры в шахматы, фигуры, выполненные при помощи технологии трехмерной печати, непременно придутся вам по душе.

    3D-принтер и малый бизнес

    Современный человек всегда стремится к чему-то новому и необычному. Появление трехмерной печати стало толчком для развития малого бизнеса. Изделия, изготовленные на 3D-принтере, позволят заработать довольно неплохие деньги. Цены на устройства разные: наиболее простые стоят около 500 — 1000, более продвинутые модели – свыше 10000 долларов. Самые современные модели обладают компактными размерами, позволяющими проводить установку на небольших столах. Каковы же возможности 3D-принтера, какие изделия можно вырастить с его помощью?

    Популярные идеи для бизнеса:

    1. сувенирная и подарочная продукция с изображением полюбившихся героев художественных и мультипликационных фильмов;
    2. оригинальные брелоки, красивая бижутерия, аксессуары для смартфонов, планшетов, сумок;
    3. товары повседневного использования: тарелки, ложки, вилки и пр.;
    4. предметы быта: своеобразные шкатулки, интересные вазы и абажуры, другие изделия, призванные украсить жилище или офис;
    5. наглядные учебные пособия, применяемые в детских садах, школах, колледжах, университетах;
    6. рекламная продукция: от небольших надписей до вывесок и баннеров;
    7. макеты обуви, одежды, которые впоследствии будут использоваться профессиональными дизайнерами;
    8. запасные части;
    9. туристическая индустрия – фигуры людей на фоне интересных зданий, скульптур, непосредственно макеты различных достопримечательностей.

    Объемная печать – хорошая перспектива для начала своего дела. Хотя скорость современных принтеров пока небольшая, при увеличении потребности в изделиях, всегда можно расширить производство путем приобретения еще нескольких агрегатов. Сила 3D-принтера в создании недорогих, порой уникальных изделий, за изготовление которых не берется промышленность.

    Несомненно, 3D-принтеры являются огромным прорывом в данной отрасли. С каждым годом эта индустрия развивается, расширяя ассортимент производимых товаров. Возможно, вскоре появятся большие фабрики, которые смогут сравнительно за короткое время производить необходимые товары. Возможности этих трехмерных устройств безграничны. Они нашли применение во многих направлениях медицины.

    Особой популярностью пользуются принтеры в стоматологии, где с их помощью изготовляют временные коронки и челюстные имплантаты, необходимые для нормальной жизни человека. Производство челюстных аппаратов важно для облегчения работы хирургов.

    3D-печать очень востребована в протезировании. Эта технология способна учитывать индивидуальность строения человеческого тела во время изготовления протезов. Специальные микрополости, находящиеся в нужных местах протезных систем, позволяют здоровым клеткам тканей беспрепятственно перемещаться, тем самым облегчая и ускоряя привыкание человека к протезу.

    Технология трехмерной печати широко используется при изготовлении имплантатов. Известно, что недавно успешно проведена операция, позволившая внедрить кусок черепа. Сначала было проведено 3D-сканирование, лишь затем приступили к созданию необходимой модели.

    Современным ученым с помощью клеток печени (гепатоцитов, звездчатых и клеток эпителия) удалось напечатать на 3D-принтере фрагмент печени. Ткани, изготовленные таким образом, применяют пока лишь для тестирования влияния различных лекарств, а не для пересадки органов человеку. Искусственно созданная ткань самостоятельно существует целых пять дней.

    Строительство

    Пока только несколько компаний производят строительные принтеры. Стоимость самой дешевой модели превышает 12 тысяч евро. Даже несмотря на среднюю высоту, это устройство может делать дома, объем которых 144 м 3 . Пока нет идеальной модели, которая бы полностью удовлетворила инженеров и строителей. Тем не менее во многих странах активно ведется работа по усовершенствованию 3D-технологии.

    Ученые умы пытаются создать уникальное устройство, которое могло бы использовать самое разнообразное сырье. Например, применение керамики, стекла, оксида алюминия позволит «вырастить» самые необходимые элементы для дома. Использование 3D-печати облегчит возведение строений, снизит затраты труда, уменьшит количество отходов. Помимо того, эта умная машина сможет заменить человека в небезопасных местах.

    Китайская компания «Winsun» в 2014 году удивила мир информацией о возведении домов при помощи огромного 3D-принтера (высота устройства — 6,6 м, ширина – 10 м, длина – 40 м). Эта уникальная машина работает круглосуточно без остановки и наблюдателей, построить дом можно практически за сутки.

    Технология строительства заключается в послойном нанесении раствора, приготовленного из цемента и переработанного строительного мусора. Дом имеет пол, стены шириной около 30 см, полностью приспособлен к размещению сантехники, электропроводки и других коммуникаций. Какова окончательная стоимость строения пока доподлинно неизвестно, однако, уже сейчас понятно, что за этой революционной технологией будущее. Единственный недостаток – это стоимость перевозки готового дома, гаража или другой постройки, ведь строительный принтер немобилен и для нормальной работы требует заводских условий.

    Архитектура

    Трехмерное моделирование успешно используют в архитектуре, ведь этот способ позволит архитекторам наглядно донести свои идеи заказчикам. Такая модель будущего строения намного эффективнее обычной картинки или изображения на мониторе компьютера. Клиент получает полную информацию о будущем проекте, причем с учетом всех имеющихся тонкостей.

    Ювелирная индустрия

    В настоящее время существуют принтеры, которые работают с золотом, серебром, платиной, сталью и цветным нейлоном. Эти 3D-устройства предназначены для производства ювелирных украшений. Стоимость таких принтеров начинается с 300 тыс. рублей. Обладатели такой техники за короткое время создают огромное количество всевозможных изделий.

    Увлечение 3D-технологией подобно лихорадке захватывает мир. С каждым годом появляется все больше новых моделей, расширяется область применения этой техники. Трехмерная печать стала активно использоваться во всех отраслях промышленности. Наверное, совсем скоро наличием в доме 3D-принтера никого не удивишь. Это устройство, как обычный холодильник или телевизор, станет доступным и необходимым.

    5 советов по выбору фотополимерного 3D-принтера.

    Подпишитесь на автора

    Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

    Отписаться от уведомлений вы всегда сможете в профиле автора.

    Статья относится к принтерам:

    Всем привет, Друзья! С Вами 3DTool! Перед покупкой 3D-принтера необходимо определиться с задачами, которые вы поставите перед устройством. Это позволит конкретизировать бюджет и поможет выбрать технологию 3D-печати и сам 3D-принтер.

    Например, вы занимаетесь изготовлением миниатюр для настольных игр, или литьем из пластика и вам необходима качественная матрица с максимально гладкой внешней поверхностью для создания молда. В этом случае, широко распространенный FDM (fused deposition modelling)скорее всего вам не подойдет. И внимание следует сконцентрировать на фотополимерной (жидкостной) 3d-печати.

    Но по каким критериям выбрать такое устройство? В этой статье мы хотим поделиться с Вами 5 советами по выбору фотополимерного 3D-принтера и разобрать, что же представляет из себя эта технология. Поехали!

    Перед тем, как озвучить наши советы, давайте немного разберем матчасть и познакомимся с тем, какие вариации фотополимерных 3D-принтеров существуют и чем они отличаются друг от друга. Условимся, что возьмем наиболее распространенные из них и не будем затрагивать довольно редкие и не встречающиеся на рынке.

    Читать еще:  Как почистить кэш на планшете

    Технология SLA (Стереолитография)

    Стереолитография* — самая первая, изобретенная технология фотополимерной 3D-печати. Использует в качестве расходных материалов «медленные» фотополимерные смолы и работает по принципу «засветки по пикселям», то есть один слой материала засвечивается точечно путем фокусировки лазерного или светового луча.

    Это обеспечивает наилучшее качество печати, позволяет работать с широким спектром материалов, но существенно снижает скорость работы.

    *Более подробно познакомиться с этим типом фотополимерной 3D-печати, вы можете в нашей статье, по ссылке

    Типичным представителем этой технологии являются широко известный 3D-принтер Form 2, от компании Formlabs. Цена этих устройств составляет порядка 200 — 300 тысяч рублей.

    Высокая точность и качество печати.

    Большой выбор различных по свойствам фотополимеров.

    Сравнительно низкая скорость печати.

    Высокая цена расходных материалов.

    Технология DLP (Digital Light Processing)

    Данная технология является прямым идейным наследником Стереолитографии, но максимально упрощена по сравнению с прародителем.

    В качестве источника излучения, как правило применяют мощные DLP проекторы способные выдавать свет с высокой интенсивностью. Отсюда и взялось название самой технологии. Возможность формировать контуры засветки, позволяет добиваться высокой точности позиционирования и выдавать отличное качество внешней поверхности.

    Благодаря засветке целого слоя, а не – точечно, данная технология существенно быстрее классического SLA, но немного теряет в качестве.

    На этой технологии основана работа многих устройств, например, отлично знакомого нам 3D-принтера XYZ Nobel Superfine, который мы подробно обозревали в одной из своих статей, ранее.

    Более высокая скорость за счет засветки слоя целиком

    Более простая, чем SLA

    Более дешевые материалы

    Проблемы с паразитной засветкой

    Падение точности и скорости с увеличением области печати

    Технология LCD/DPP (Direct UV Printing/Day light printing)

    В целом, похож на DLP, и многие устройства, работающие на этой технологии даже носят название DLP/LCD 3d-принтеров, однако основным отличием является наличие LCD – панели в качестве матрицы или шаблона засветки.

    Так же, эта технология наименее затратная в производстве, тк не использует сложных и дорогостоящих элементов, таких, как подвижные отражатели и лазерные источники света.

    Она работает благодаря мощному сверхяркому светодиоду, выравнивающей свечение – линзе Френеля и непосредственно матрице IPS LCD панели, формирующей белый контур и черный фон слоя засветки. Черный цвет излучение не проходит, а белый засвечивает свободно, благодаря чему формируется застывающий слой материала.

    Отличными примерами данной технологии являются 3D-принтерыZortrax Inkspire и Photocentric Liquid Crystal HR V2Плюсы технологии:

    Сильно дешевле аналогов

    Простая конструктивно и в использовании

    Рабочая область ограничена лишь размерами и разрешением матрицы

    Так же, проблемы с паразитной засветкой

    Менее четкий контур стенки за счет особенности формирования маски

    Низкая скорость печати из-за слабой силы засветки материала

    Так же, необходимо заметить, что в зависимости от выбора технологии фотополимерной печати, вы сможете использовать разные материалы.

    Подбор материала зависит, как правило, от вашего типа 3D-принтера. Разные устройства настроены на излучение разных длин волн однако, как правило, многие производителя оставляют эту информацию в секрете.

    В целом диапазон фотополимерных материалов реагирует на ультрафиолетовое излучение средних и длинных волн. 300 – 400 нм. Реже используются коротковолновые полимеры – 200 – 300 нм.

    Существует огромное множество материалов с разными свойствами, от стоматологичесих фотополимеров, позволяющих печатать импланты и коронки, до выжигаемых фотополимеров, которые применяется для создания восковок и последующего литья.

    Необходимо принять во внимание, что фотополимерные принтеры, помимо расхода материала на поддержки, что неизбежно, так же как правило, оставляют небольшой слой материала на кювете после печати, и если вы планируете использовать несколько разных материалов одновременно, придется закупить больше материала, или запастись дополнительными кюветами, чтобы не расходовать дорогой материал впустую (после каждой смены материала, кювету необходимо промывать от оставшегося фотополимера). Соответственно, чем больше область печати выбранного устройства, тем больше будет расходоваться материала.

    Итак, перейдем к нашим советам. Что же необходимо учесть, перед покупкой фотополимерного 3D-принтера?

      Определите Ваш бюджет

    Самым важным при выборе фотополимерного 3D-принтера, как и при покупке любого другого устройства или станка, станет бюджет.

    Чем больше денег вы готовы потратить, тем больше вариантов будет для Вас предоставлено. В среднем, один из самых дешевых фотополимерных 3D-принтеров обойдется Вам, примерно в 100 тысяч рублей. Промышленные же решения, легко переваливают за миллион.

    Наиболее адекватной ценовой категорией станет сегмент профессиональных и полупрофессиональных устройств. Он стартует около 200 тысяч рублей и отсекается примерно полумиллионом, за самые дорогие устройства.

    Определитесь с основной задачей.

    Какого размера будут ваши изделия?

    Чем более точные и маленькие размеры изделий вам необходимы, тем менее подходят для Вас DLP и LCD 3D-принтеры. А значит, нужно остановиться на классических SLA вариантах.

    Стоит задача печатать более крупные изделия быстрее и есть возможно более тщательной обработки поверхности? DLP – ваш выбор.

    Бюджет ограничен, но требуется более высокое, чем FDM, качество поверхности? LCD – 3D-принтер подойдет Вам, как нельзя лучше.

    Фотополимерные 3D-принтеры, не предполагают большой свободы в самостоятельном подборе настроек печати, и как правило заточены под ту, или иную модель 3D-принтера, изначально.

    Поэтому, если Вам требуется определенный вид материала, например – стоматологические фотополимеры, заранее ознакомьтесь с тем, какие материалы предлагают производители того или иного принтера.

    Наиболее широким спектром фотополимеров, на данный момент обладают компании Formlabs и Photocentric, если выбирать из уровня полупрофессиональной и профессиональной, не промышленной техники.

      Определитесь с размером рабочей области

    После того, как вы выбрали производителя и технологию, обратите внимание на размеры кюветы (рабочей области), доступных устройств.

    В данном случае, как мы уже говорили выше, в зависимости от технологии, варьируется и размер платформы. Например, 3D-принтеры Photocentric Liquid Crystal Pro обладают поистине внушающим объемом печати 470 x 240 x 340мм, тогда как размер даже самого большого Formlabs Form 3L ограничен 300x335x200мм.

    Так же, например, для печати партий ювелирных восковок, или стоматологических элайнеров, потребуется принтер с большой областью печати.

    Если же вы планируете печатать мастер модели и матрицы для фигурок из настольных игр и вам требуется максимальное качество, лучше обратить внимание на маленький SLA-DLP 3D-принтер, с высокой детализацией и толщиной слоя меньше 100 микрон.

    • Подберите уровень автоматизации

    Как и в любых других устройствах, чем более «упакован» 3D-принтер дополнительными функциями, тем удобнее им пользоваться. А значит, быстрее будет происходить процесс постановки на печать, легче станет отслеживать ее статус и меньше потребуется лишних действий.

    Для комфортной работы Вам потребуется, как минимум:

    система автоматической подачи полимера в кювету

    датчик уровня жидкости в кювете

    быстросъемная платформа построения

    Так же, немаловажным является интерфейс устройства и программное обеспечение, идущее в комплекте.

    На данный момент, хорошим тоном среди производителей является наличие удобного сенсорного дисплея с хорошо читаемыми иконками, возможность подключения принтера по Wi-Fi, или Lan и собственное П.О.

    На данный момент спектр выбора фотополимерных 3D-принтеров огромен. Заметно расширившийся потенциал технологии набирает обороты, а благодаря высокому качеству печати и широкому набору материалов различных свойств и характеристик, «жидкостная» 3D-печать проникает все глубже в различные сферы производства и прототипирования.

    Не ограничиваясь только сферой ювелирных украшений, или стоматологии, фотополимерные 3D-принтеры находят себя в архитектурном макетировании, инженерном прототипировании, хобби, а также в автомобильной и сфере ремонта бытовой техники. Словом, в тех отраслях, где требуется особенная точность и качество поверхности.

    Отлично зарекомендовав себя в начале становления аддитивного производства, фотополимерная печать продолжает удерживать пьедестал лидера по многим параметрам, среди других видов 3D-печати, уступая только промышленным системам спекания металлов и Селективному Лазерному Спеканию (SLS).

    Что ж, а на этом у нас все! Спасибо что были с нами, до новых встреч. Дальше будет интереснее!

    Приобрести указанные в статье 3D-принтеры, расходный материал к ним, задать свой вопрос, или отследить заказ, вы можете

    По телефону: 8(800)775-86-69

    Не забывайте подписываться на наш YouTube канал :

    Настоящее и будущее 3D-печати: проблемы и прогнозы

    За последние 15 лет 3D-печать прошла путь от курьезной деятельности по созданию мелких сувениров до комплексной технологии, которая готова преобразовать мегаотрасли. Что ее ждет в будущем?

    Современная 3D-печать использует металл и полимеры: твердые или гибкие, жесткие или мягкие, горючие или несгораемые, которые применяются везде — от производства и строительства, медицины и электроники до фэшн-индустрии и даже изобразительного искусства.

    Технический вопрос не решен окончательно, поиск дальнейшей оптимизации продолжается непрерывно, но в общих чертах возможности 3D-печати стали обрисовываться: на современных принтерах можно распечатать многоэтажку, мост, ракетную дюзу, титановый скелет, авторское платье, мебель, арт-декор или ювелирные украшения. С накапливаемым опытом и новыми технологиями себестоимость готовой продукции непрерывно сокращается. Цена принтеров за последние пять лет упала на порядок: с десятков тысяч и миллионов до нескольких сотен и даже десятков тысяч долларов.

    Все более актуальным становится вопрос практической и маркетинговой стратегии: что именно принесет миру переход от массового к индивидуальному производству? И в каких отраслях можно искать прибыль?

    Производство

    Прогресс в области 3D-печати металлических деталей продвигается очень быстро. Преимущества перед устаревшими методами колоссальны: математическое моделирование заданных характеристик, моментальное прототипирование, создание форм, ранее недоступных для машинного исполнения, и т.д. Даже если не слушать «апостолов» и энтузиастов 3D-печати, факты говорят сами за себя. Крупнейшие мировые производители — BMW, Mercedes, Volkswagen, Ford — за последние два года вложили миллиарды в развитие новых технологий. Например, GE купил Concept Laser, Siemens объявила о планах сотрудничества с HP и Trumpf, большинство крупных автопроизводителей заявили о своем намерении использовать новое технологическое оборудование для собственного производства уже в ближайшем будущем.

    В последнее время специалисты все больше заговорили о приходе 3D-печати в аэрокосмическую отрасль: NASA, Boeing, Airbus, SpaceX — все уже работают с напечатанными частями для своих самолетов и космических кораблей. Европейской агентство по авиационной безопасности (EASA) даже сертифицировала создаваемые на 3D-принтере детали. 3D-технологии в авиакосмической отрасли особенно востребованы, ведь здесь количество единичных деталей измеряется десятками и сотнями. Toyota Camry потребляет миллионы деталей, и в таких объемах их все еще выгоднее штамповать на устаревших станках, другое дело ракеты и самолеты.

    Читать еще:  Умная наручная электроника от швейцарского люксового бренда Tag Heuer

    Электроника

    В Италии разработана технология производства углеродных нанотрубок (УНТ), которые могут быть напечатаны с использованием стандартного коммерческого 3D-принтера. Вы можете подумать, что это просто интересная задача для узкоспециализированных ученых. К счастью, это не так. УНТ — это основа проводящих композитных материалов с улучшенными электрическими свойствами. При добавлении 0,1% УНТ в полимерную смесь электропроводимость материала повышается на три порядка. Для обычных пользователей поясню: при дальнейшем развитии технологии забудьте про провода — 3D-принтер будет печатать детали, изначально включающие в себя проводящие каналы. Над подобными проектами работают десятки компаний по всему миру: например, американская Voxel8 уже разработала специализированный 3D-принтер, который может быть использован для печати не просто проводников, а встраиваемой электроники вообще.

    Прогресс в области производства и электроники может казаться абстрактным: три последних поколения людей живет в эпоху технологических прорывов, ставших привычным фоном современной жизни. Но 3D-печать способна удивить даже на фоне интернета и Аполлона-11 — скажем, в области медицины. Для примера можно взять компанию Wake Forest, разработавшую комплексную программу по печати клеток, костей и даже органов (ITOP).

    ITOP использует родные человеческие клетки для создания на основе их генетического кода органов, которые могут быть хирургическим путем имплантированы в тело человека без риска отторжения. Они уже успели напечатать кости, мышцы и хрящи, используя ITOP, после чего успешно имплантировали их в крыс. Да, пока это лабораторные испытания, но успешные: после нескольких месяцев наблюдения исследователи подтвердили, что имплантированные ткани разработали свою систему кровеносных сосудов и нервов. Следующая стадия — переход к испытаниям на людях, где основатели проекта постараются повторить те же результаты.

    В целом, тренд очевиден: наука стремится к заменяемости каждого органа, каждой части человеческого тела. А это сделает возможным лечение подавляющего числа хронических заболеваний или серьезных травм, где потребность в лечении или купировании заменится простой и доступной репликацией.

    Революция в материалах

    В MIT распечатали на 3D-принтере графеновый лист толщиной в одну молекулу. Это был экспериментальный опыт в рамках создания нового композита с запредельными на данный момент характеристиками: легче воздуха, но в десять раз прочнее стали.

    Другая передовая технология — использование в 3D-печати так называемой «керамической пены», характеристики которой (плотность, эластичность, вес) можно менять. Проще говоря, из одного и того же сырья можно напечатать и надувную фигуру, колышущуюся на ветру, и гранитный монумент весом в 4 тонны. Это работа не только над формой, но и над материалом распечатываемых объектов: микроструктурный контроль (с помощью обработки пены) и архитектурный (через моделирование и печать). Теоретическая стадия пройдена, впереди еще несколько лет практических испытаний и усовершенствований.

    Еще один революционный прорыв сделан в области лазерного спекания металлов. Новый метод, при котором металлический порошок смешивается в 3D-принтере с полимером на порядок повышает прочность итоговых металлических деталей.

    Моделирование

    Значительную часть потенциала 3D-печати обеспечивает программная составляющая. Использование софта, вроде AutoCAD, позволяет не только самому строить сложнейшие модели, но и автоматизировать процесс, оставив расчеты и прототипирование на машинный разум. Даже средний компьютер моделирует объекты, которые по массе, прочности, эргономичности превышают устаревшие, разработанные живыми инженерами, конструкции на 50-70%. И даже не столько за счет новых материалов, но в силу большей производственной гибкости по сравнению с литьем, обработкой или штампованием. Конструкции, которые могут быть напечатаны, заменяют сложные составные структуры и улучшают их в разы.

    На сегодняшний день программная составляющая развивается даже быстрее, чем технологическая. На рынке появляется новый софт, отвечающий за 3D-сканирование, создание моделей в объемном варианте, прототипирование с «нуля» или оптимизацию готовых образцов. Один из приоритетов для разработчиков нового ПО – максимальная юзабильность, ориентация не только на специалистов, но и на обычных пользователей. В объемной печати важно, чтобы качественное ПО было не только для 3D-принтеров, но и для программ-редакторов, обеспечивая свободу дизайна и массовой кастомизации.

    Конечно, при всей перспективности 3D-технологий в этой сфере есть ряд серьезных проблем. С экономической точки зрения главный ограничивающий фактор — стоимость расходных материалов для 3D-печати. Свойства существующих полимеров еще крайне вариативны и пока не отвечают требованиям промышленности, в то время как металлические решения хотя и преодолели технологический порог нужной прочности, по-прежнему ограничены и слишком дороги для повсеместного использования. Сейчас в мире производится всего 40 000 тонн порошковой стали в год, хотя ежегодно и происходит удвоение ее объемов.

    Еще один фактор — распространенность самих 3D-принтеров. Вопреки популярной шутке сложные и продвинутые модели пока не могут печатать себя сами. К тому же они сами должны стать быстрее и больше. Третья важная проблема — дефицит хорошо подготовленных дизайнеров, отсутствие опыта, знаний и понимания специфических отраслевых потребностей. Производители и пользователи только нащупывают эффективные каналы связи. К счастью, в последнее время значительно выросло число образовательных программ в этой области.

    Наконец, отсутствие массового потребительского рынка. Бизнесу, работающему в сфере 3D-печати, предстоит замещать целые сегменты экономики. А рынок и потребитель пока не готовы перейти в новую формацию, где любой необходимый бытовой предмет можно будет просто заказать через сеть и забрать из маленькой студии на первом этаже его дома.

    Прогнозы

    1. 3D-печать в течение ближайших пяти лет войдет в массовый сегмент. Студии печати появятся везде, где есть хотя бы тысяча потенциальных покупателей.
    2. Себестоимость расходных материалов будет неуклонно снижаться как в области полимеров, так и металлических деталей.
    3. 3D-печать очень скоро заменит малосерийное производство чего угодно, при этом произойдет заметное снижение цен из-за сокращения издержек на капитальные инвестиции, затрат на логистику, складские мощности и т.д.
    4. Возникнет объемный рынок 3D-моделирования. Появятся студии, рассчитывающие форму деталей и математические формулы их физических характеристик. Значительная часть чертежей будет находиться в открытом бесплатном доступе, индивидуальные заказы будут платными, но разумными и посильными для самого широкого спектра клиентов.
    5. 3D-печать создаст новый рынок медицинских услуг, где все более частой рекомендацией будет не лечение или купирование симптомов, а замена пораженных органов на новые, выращенные из собственных клеток пациента.
    6. Строительная отрасль переживет значительные метаморфозы, связанные с массовым, индивидуальным, недорогим строительством. Вероятнее всего, будущие проекты будут реализовываться в концепции «новой урбанистики».
    7. Россия войдет на этот рынок без какого-либо заметного отставания от мира, более того, займет прочную нишу в области 3D-моделирования и разработки ПО для печати.

    3D-принтер: большой потенциал объемной печати

    Принтеры для трехмерной печати или 3D-принтеры – это устройства для изготовления объемных моделей. Аппараты узкой специализации обладают безграничными возможностями и сегодня используются в каждой сфере жизни современного человека. Несколько лет назад 3D-принтеры стали доступны и для домашнего использования, попутно охватив часть малого бизнеса.

    История появления

    История создания подобной техники зародилась еще в середине 80-х годов прошлого столетия, но слабое развитие компьютерных технологий «заморозило» активное внедрение трехмерной печати в быт и производство.

    Ощутимый старт 3Д-принтеры получили только в 2005 году, наряду с совершенствованием компьютерных возможностей. Тогда публике был представлен первый трехмерный принтер, который печатал в цвете. Впоследствии техника претерпела немало изменений, было разработано современное программное обеспечение для управления процессом печати. В результате пользователям стал доступен функциональный агрегат, способный «печатать» чехлы для телефонов или новые 3D-принтеры.

    Первый 3D принтер

    Как это работает

    Общий принцип работы трехмерного принтера в теории прост и понятен. В программе для 3D-моделирования создается объект или его часть (крупные модели делят на несколько элементов). Затем файл отправляется для обработки специализированной программой (для формирования G-кода), после чего в дело вступает техника. G-код делит цифровую модель на сотни горизонтальных дорожек, задавая траекторию печатающей каретке. На основание слой за слоем наносится расплавленный материал, создавая вполне осязаемый объект.

    Схематическое изображение 3D-принтера

    Всего существует семь основных технологий, используемых для трехмерной печати, но большая их часть нашла применение только в промышленных целях. Для любительской «пластиковой печати» и малого бизнеса разработаны относительно компактные и недорогие аппараты.

    • Технология FusedDepositionModeling (иначе FDM-принтеры) получила самое массовое распространение для трехмерного моделирования и кулинарии. Материал разогревается и подается на платформу через сопло печатающей головки. Объект «вырастает» на плоскости, а его размеры ограничены параметрами платформы.

    • Технология Polyjet разработана в 2000 году и сегодня принадлежит компании Stratasys. Создание трехмерных объектов производится посредством полимеризации фотополимера под действием УФ излучения. Фотополимер – дорогой и хрупкий пластик, потому в быту такие принтеры практически не используют, но благодаря точной детализации моделирования аппараты применяют в медицине и промышленности (для создания прототипов).

    Все о том, как работают современные принтеры для трехмерной «пластиковой печати» можно узнать из тематического видео, например, этого. Также в них часто демонстрируют, как аппарат работает с различными материалами для изготовления объекта.

    Управление процессом печати

    Как правило, пользователю нужно произвести ряд настроек непосредственно перед началом печати.

    1. Подключение оборудования к ПК осуществляется через USB-кабель.
    2. Калибровка перемещения сопла относительно платформы.
    3. Настройка и управление нагревом платформы и сопла-дозатора.
    4. Мониторинг соотношения температур.
    5. Управление процессом печати (экструдером) – настройка скорости подачи материала, замена бобин пластика.

    Контроль над печатью осуществляется через ПК. Для создания объекта от идеи до результата пользователю необходимы специальные программы для трехмерного моделирования и управления аппаратом.

    Современные технологии пока не позволяют создать принтер, где все операции проводятся путем нажатия пары клавиш, потому необходимо освоить немало специфических программ и основы моделирования.

    Читать еще:  Почему наушники шипят и хрипят

    Перед запуском печати оператор калибрует принтер, настраивая его относительно стола-платформы. Базовая прошивка принтера представляет собой ряд настроек по умолчанию, а пользователь производит более точные настройки, в зависимости от используемого материала. Так, для создания объемных элементов на основе ABS или PLA задается разная температура плавления. В процессе печати, оператор через ПО следит за работой. Весь процесс создания модели может занимать от нескольких часов до суток, здесь ключевым фактором является точность исполнения: точные объекты с детальной прорисовкой производятся дольше, чем более грубые.

    Где можно применить 3D-принтер

    Область применения 3D-принтеров довольно широка: от любительских поделок до бизнеса. Предприниматели наряду со студентами архитектурных отделений первыми заметили огромный потенциал «пластиковой печати».

    1. Проектирование и создание трехмерных моделей различных сооружений.
    2. Изготовление пластиковых элементов для техники: крышки, шестерни, рукоятки. Отдельным направлением стало изготовление деталей автомобилей иностранного производства, что совершенно естественно, если оценить их стоимость.

    Диски для автомобилей

    Копия скульптуры Микеланджело

    Также объемное моделирование используют в ювелирной промышленности и всех сферах дизайна и проектирования.

    Если ранее печать осуществлялась пластиком, то сегодня разнообразие материалов впечатляет. Производители изготавливают различные основания, например, имитирующие натуральное дерево. Кроме того, в качестве материала для печати можно выбрать не только полимеры, но и нейлон. Эту идею очень быстро подхватили дизайнеры и создали целые коллекции одежды.

    Азартные коллекционеры сполна оценят потенциал «пластиковой печати», ведь теперь есть возможность воссоздать любой объект: модели самолетов, знаменитых персонажей, предметов искусства. Редкие коллекционные экземпляры могут стоить довольно дорого, как очень хороший принтер для дома, и здесь выбор очевиден.

    Брать или не брать: достоинства и недостатки оборудования

    Использование объемной печати предоставляет пользователям обширные возможности. Ключевое преимущество техники – воспроизведение любого трехмерного объекта, и исключений здесь практически нет. Все, что может быть изготовлено из пластика, можно «напечатать», будь то дорогой в оригинале бампер от иномарки или проект будущего торгового центра на выставке архитекторов. Решающим фактором станет размер оборудования, а выражаясь точнее – размер его рабочего стола.

    Потенциал «пластиковой печати» усложнен трудоемким процессом подготовки и управления, требующим узкоспециализированных знаний. Неопытный пользователь не всегда сможет спроектировать в 3D-MAX даже простую геометрическую фигуру, не говоря о собственном портрете. Чтобы пользоваться техникой, ее необходимо освоить, а этой займет некоторое время.

    Второй недостаток 3D-принтера – его габариты. В продаже доступны и компактные модели, но их предельные размеры печати слишком скромны, хотя вполне подойдут для поэтапного изготовления инсталляций или архитектурных проектов.

    Конечно, в качестве игрушки приобретать 3D-принтер нерационально, средняя стоимость моделей дешевого сегмента превышает 30 000 рублей. Покупка будет выгодна, если оборудование будет выполнять определенную задачу: приносить прибыль, развивать навыки, получать образование, заниматься творчеством, помогать в работе.

    В ближайшем будущем можно ожидать новых разработок в этой области. Сегодня уже можно напечатать настоящий жилой дом из обычной строительной смеси. Естественно, такое оборудование недоступно для бытового использования, но сам факт применения новых материалов для печати обещает методичное расширение возможностей объемной печати в домашних условиях.

    3D-печать в строительстве: как это работает, технологии и 3D-принтеры

    Серийная 3D-печать зданий становится реальностью — с помощью строительных 3D-принтеров печатают дома в России, Китае, странах Европы, Азии и Америки. В этом обзоре мы рассказываем о наиболее перспективных отечественных и зарубежных проектах в этой области.

    Содержание

    Технология печати

    А начнем мы с технологии. Принцип работы строительных 3D-принтеров заключается в экструзии — или выдавливании — специальной смеси, слой за слоем, по заданной трехмерной компьютерной модели.

    Заранее подготовленная смесь, состоящая из цемента, наполнителя, пластификатора и других добавок, загружается в бункер устройства и оттуда подается к головке принтера. Смесь наносится на поверхность площадки или предыдущие напечатанные слои.

    По такому принципу работает большинство строительных 3D-принтеров. Среди них различают три типа устройств:

    Портальные 3D-принтеры представляют собой конструкцию из рамы, трех порталов и печатающей головки. С помощью таких устройств можно печатать здания и по частям, и целиком — если они умещаются под аркой принтера.

    Устройства типа «дельта» не зависят от трехмерных направляющих и могут печатать более сложные фигуры. Здесь печатающая головка подвешивается на рычагах, которые крепятся к вертикальным направляющим.

    Наконец, роботизированные принтеры — это робот или группа роботов типа промышленного манипулятора, оснащенных экструдерами и управляемых компьютером.

    Есть и другие методы строительной 3D-печати. Например: оборудование D-Shape печатает наслоением порошкового материала с последующим связыванием его нанесением клеящего раствора.

    Основным материалом для 3D-печати домов являются мелкозернистые смеси, которые отличаются от традиционного бетона. Каждая компания разрабатывает свою рецептуру, которая соответствует устройству принтера и его сопла, а также специфике готовых изделий.

    Самые важные параметры бетона для 3D-принтера — это прочность, скорость застывания и набора прочности, пластичность. Свойства бетона регулируются составом смеси — количеством цемента и качества заполнителей, а также добавками пластификаторов.

    Готовые смеси позволяют печатать элементы различной сложности и размеров — от малых архитектурных форм, типа клумб и скамеек, до целых зданий, мостов и даже небоскребов.

    Contour Crafting

    В 2009 году резиденты стартап-инкубатора “Университет Сингулярности” (Singularity University aka Singularity Education Group, осн. в 2008 в NASA Research Park, Калифорния), под руководством Берока Хошневиса (Behrokh Khoshnevis), создали проект по развитию и коммерческому применению технологии контурного построения — Contour Crafting, которая считается первой строительной технологией 3D-печати и фактически стала самой распространенной — это та самая технология, при которой цементная смесь наносится экструдером, подобно пластику при печати FDM.

    Основанная Бероком Хошневисом одноименная компания развивает эту технологию 3D-печати и сотрудничает с NASA. Разработчик предлагает использовать этот метод печати для восстановления пострадавших от стихийных бедствий городов и строительства сооружений на других планетах.

    Компания использует для 3D-печати зданий управляемый компьютером портальный кран с закрепленным на нем экструдером. В процессе Contour Crafting задействован быстросхватывающийся материал, который наносится краном послойно. Технические элементы, такие как арматура и коммуникации, могут быть добавлены по мере создания слоев.

    Российская компания АМТ входит в группу компаний «АМТ-СПЕЦАВИА». Сфера ее деятельности — разработка и производство строительных 3D-принтеров, продажа и сервисное обслуживание оборудования на зарубежных рынках. Ассортимент компании состоит из семи 3D-принтеров разных размеров.

    Этот дом в Ярославле — самое большое здание в Европе и СНГ, построенное с применением принтеров компании AMT. Его общая площадь — 298 квадратных метров.

    Российская компания «Апис Кор Инжиниринг» (Apis Cor) — разработчик уникального мобильного строительного 3D-принтера, который печатает дом целиком на месте строительства.

    Габаритные размеры 3D-принтера в сложенном состоянии составляют 4×1,6×1,5 м, масса — 2 тонны. Площадь зоны печати — 131 квадратный метр. Для печати зданий и сооружений больших размеров можно применять несколько синхронизированных между собой 3D-принтеров.

    В 2014 году шанхайская компания Winsun прославилась на весь мир возведением десяти 3D-печатных зданий всего за одни сутки. На деле все оказалось немного скромнее: небольшие «коробочки» были напечатаны, блок за блоком, заранее, а затем собраны на строительной площадке, без арматуры и коммуникаций, но с остеклением.

    Компания использует принтер на основе технологии FDM и один и поэтапный процесс с цементом, песком и стекловолокном. Эти материалы обеспечивают достаточную прочность стен. 3D-принтер WINSUN — это портальная конструкция с габаритами 36х12х6 метров.

    D-Shape — один из наиболее необычных вариантов строительной 3D-печати. Устройство не использует позиционируемый по трем осям экструдер, а полагается на массив из 300 сопел, закрепленный на подвижной платформе. Размеры рабочей площадки принтера, в текущей версии — 6х6 метров.

    Технология D-Shape напоминает струйную печать, совокупность сопел используется для нанесения связующего агента на слои песка.

    CyBe Construction

    CyBe Construction — компания из Нидерландов, применяющая 3D-печать в строительстве домов «под ключ». CyBe производит материал для печати и два строительных 3D-принтера.

    Эти крупные промышленные устройства требуют участия двух операторов, но могут печатать большие строения очень быстро. К примеру, в Дубае в 2017 году компания напечатала лабораторию площадью 168 квадратных метров всего за три недели.

    Университет Нанта, Франция, совместно с Nantes Digital Sciences Laboratory (LS2N), работает над проектом печати домов на 3D-принтере, известном как Yhnova.

    Для проекта будет использоваться разработанный университетом метод Batiprint3D — 3D-печать «изнутри». Опалубка из полиуретана печатается послойным распылением материала похожего на монтажную пену, после застывания которого заливается бетоном.

    Проект Yhnova представляет собой строительство пятикомнатного социального жилья с дугообразными стенами и скругленными углами. Роботизированная рука Batiprint3D может печатать структуры высотой до 7 метров, площадь планируемого дома — 95 квадратных метров.

    Итальянский производитель WASP создал крупнейший на сегодняшний день строительный 3D-принтер. Этот дельта-бот, высотой 12 и шириной 7 метров, имеет регулируемые рычаги длиной до 6 метров.

    Применение принтера под названием BigDelta направлено на устранение жилищного кризиса, путем создания более дешевых домов, что особенно актуально для развивающихся стран.

    Проект BigDelta — это строительная 3D-печать с использованием природных материалов. В качестве «расходников» используется прессованная солома и земля.

    Заключение

    Строительная 3D-печать — одно из самых перспективных направлений в области возведения всевозможных сооружений. Ее применение сулит коммерческие выгоды, основанные на меньшем количестве необходимого персонала и сокращении затрат на материалы; социальные преимущества — в связи с возможностью быстрой постройки недорогого жилья для малоимущих и пострадавших при стихийных бедствиях; репутационные бонусы — более экологичное строительство с уменьшенными энергопотреблением и количеством отходов.

    Обращайтесь в Top 3D Shop для приобретения строительного 3D-печатного оборудования и рациональной интеграции аддитивных технологий в ваш бизнес-процесс — наши менеджеры и инженеры дадут исчерпывающую консультацию по применению оборудования, предложат сценарии применения, составят проектную документацию для поставки и обеспечат квалифицированный сервис.

    Ссылка на основную публикацию
    Adblock
    detector