Содержание

Что собой представляет матрица цифрового фотоаппарата

Что такое матрица фотоаппарата

Одной из классических тем для дискуссии в среде фотографов является сравнение «пленка или цифра», что лучше, краше, сердцу милее и так далее. Но с чем не поспоришь – обе эти технологии решают одну и ту же задачу, так любимую нами, а именно помогают создавать уникальные кадры. И если фотопленка уже много десятилетий знакома человечеству, матрица фотоаппарата вошла в повседневность сравнительно недавно. Более того, цифровая технология практически вытеснила устаревшую пленочную, и умы современности делают все для ее дальнейшего развития.

Что из себя представляет матрица

Внутри корпуса цифрового фотоаппарата расположен специальный датчик, его еще называют сенсор камеры. Он расположен прямо позади объектива. Это устройство фиксирует поступающий на него свет, аналогично пленке, но использует при этом фотодиоды, создающие специальные электросигналы. Затем из этих сигналов формируется изображение, понятное нам, и сохраняется в память. Условно, каждый фотодиод формирует одну точку фотографии, пиксель. Общее же количество пикселей мы привыкли называть числом мегапикселей. Раньше это было порядка 1-2, теперь же вы встретите и 16, и 24, и 36, и даже больше.

Больше – не значит лучше

Конечно, если вы зайдете в магазин бытовой техники, позовете консультанта и попросите помочь вам с выбором фотоаппарата, возможно и услышите один из аргументов для покупки той или иной модели – большее количество мегапикселей разрешения матрицы. Но все же это и правда не влияет на качество изображение, а лишь только на его размер. Физическое же отличие одной матрицы от другой характеризуется в ее размере и величине этих отдельных пикселей. Таким образом, компакт с 14 мигапикселями и дорогая зеркалка с 14 мегапикселями имеют совершенно разные матрицы, да и вообще состоят из разных элементов. Отсюда и кардинальное отличие в цене.

Виды матриц цифровых фотоаппаратов

Итак, мы поняли, что важен размер сенсора, но какой он бывает, как посмотреть? Было бы здорово, если бы производитель, а затем и продавец указывали всем знакомые миллиметры в характеристике фотокамеры. На практике же все не так просто, а иногда и вовсе этот параметр отсутствует в описании. Давайте взглянем на эту картинку:

Самый большой прямоугольник – 24 на 36 мм – мы привыкли называть полным кадром, так как именно этот размер имеет пленка, о которой мы уже вспоминали в начале статьи. Все же остальные виды прямоугольников, то есть матриц, классифицируются по параметру, называющемуся «кроп-фактор». Например, датчик размером 22,7 на 15,1 мм, известный также как формат APS-C, по площади меньше полнокадрового в 1,59 раз. Последнее число и является кроп-фактором, по которому можно условно (или если вы дружите с математикой, точно) определить насколько большая матрица у данной камеры. Как видите, есть совсем маленькие датчики, имеющие кроп-фактор больше 5. Получается, что чем больше этот коэффициент, тем меньше физический размер сенсора, а значит, тем менее качественное будет в итоге изображение. В телефонах и дешевых компактах установлены именно такие миниатюрные элементы. И сколько там мегапикселей, как вы понимаете, в итоге уже не столь важно.

CMOS или CCD

Еще несколько лет назад вы могли услышать, что CCD-датчик является лучшим выбором, нежели матрица по технологии CMOS. Время, однако, расставило все по местам, и сегодня почти вся популярная фототехника строится по более дешевой и доступной технологии CMOS (КМОП – комплементарная структура металл-оксид-полупроводник), которая, в свою очередь, совершенствуется, становясь лучше.
CCD (ПЗС – прибор с зарядовой связью) матрица ушла на второй план и используется в случаях, когда не критичен параметр энергопотребления.

Не слишком ли шумно?

Шум кажется совсем неуместным параметром, когда мы говорим о статичном изображении, но матрицы отличаются и этим. Так называемый цифровой шум показывает насколько датчик камеры светосилен. Например, при слабом освещении возьмите две разные по классу и цене фотокамеры, поставьте параметр ISO на значение 3200 и сделайте по кадру. Вы поймете сразу, о чем идет речь.

В общем, обычно в характеристике устройства написан диапазон ISO, в которых может работать камера, например, 100-6400. Чем диапазон выше, тем потенциально лучше будет себя вести фотоаппарат в ситуации с недостаточным освещением, но и здесь могут быть нюансы. Просто помните об этом при выборе устройства.

Матрица фотоаппарата

При выборе фотоаппарата нужно учитывать множество нюансов, обращать внимание на каждую деталь. И далеко не последнюю роль в процессе выбора играют именно характеристики матрицы, которой оснащена камера. Что же представляет собой эта самая матрица и почему она так важна? Давайте это выясним!

Общее представление о матрице фотоаппарата

Если вы посмотрите в объектив камеры, вы легко найдете матрицу: видите блестящий прямоугольник в самом центре объектива? Да, это она и есть.

Матрица является важнейшим элементом фотокамеры, отвечающим за то, какое изображение мы получим в результате съемки.

По сути она представляет собой микросхему, которая состоит из светочувствительных элементов. Когда на нее падает свет, начинается формирование электрического сигнала определенного уровня интенсивности, который зависит от степени яркости света. При съемке она фиксирует свет, который впоследствии преобразуется в фотографию.

Кстати, количество мегапикселей, которое имеет фотокамера, также зависит именно от матрицы и может колебаться от 0.3 до 10 и более (чем дороже и качественнее фотоаппарат, тем больше мегапикселей он имеет).

Изначально матрица создает монохромное (ч.б) изображение. В цветное оно преобразуется благодаря светофильтрам, которыми покрываются ее составные части.

Особенности строения матрицы

Что касается структуры матрицы, то она является дискретной и складывается из множества частей, в совокупности преобразующих падающий на нее свет. Один фотодиод в составе создает один пиксель фотографии.

Как вы наверняка знаете, каждое цифровое изображение представляет собой что-то вроде мозаики, состоящей из множества точек, которые в совокупности и являются фотографией. Изображение не «распадается» именно потому, что этих точек очень много и они имеют высокую плотность расположения относительно друг друга. Вполне логично предположить, что если бы плотность их расположения была ниже, мы бы увидели, как изображение распадается на эти самые точки, и это было бы наглядной демонстрацией дискретного характера структуры матрицы.

Матрица как альтернатива пленки

В те времена, когда цифровой фототехники еще не существовало, светочувствительным элементов, выполняющим функции матрицы, была пленка. Если проанализировать устройство пленочных и цифровых фотоаппаратов, можно увидеть, что существенных отличий между ними не так уж много. Основным отличием как раз и будет схема приема и преобразования света.

Как именно происходит процесс приема света в фотокамере с пленкой? В тот момент, когда фотограф нажимает кнопку спуска, затвор открывается, в результате чего пленка принимает свет. До того, как затвор вновь закрывается, идет химическая реакция, а ее итогом является формирование фотографии.

Как вы можете заметить, процесс создания фотоснимка был совершенно иным, и в современных фотоаппаратах матрица выполняет именно функцию пленки, то есть генерирует изображение. Они выполняют совершенно одинаковые функции, разница состоит лишь в технике их выполнения и в хранилище созданного изображения, которым в первом случае выступает пленка, а во втором — карта памяти фотоаппарата.

Характеристики матрицы

Необходимо понимать, что матрицы бывают совершенно разными по качественным показателям. В этом вопросе важным сигналом будет цена: в том или ином ценовом сегменте матрицы имеют определенный уровень качества. Будьте готовы к тому, что бюджетные варианты фотоаппарата вряд ли будут обладать высококачественной матрицей. Поскольку матрицу можно смело назвать сердцем камеры, не стоит экономить при выборе. Вы ведь хотите, чтобы ваши снимки были на высоте? Тогда остановите свой выбор на фотоаппарате, оснащенном качественной матрицей.

По каким параметрам следует выбирать матрицу?

  1. Размер
  2. Разрешение
  3. Соотношение сигнал-шум
  4. Уровень светочувствительности
  5. Динамический диапазон

Итак, рассмотрим первый параметр из нашего списка, а именно — размер матрицы. Его определяет величина пикселей, а также плотность их расположения относительно друг друга. Меньшая плотность расположения пикселей дает меньший уровень нагрева матрицы и более сильное соотношение сигнала и шума, которое создает более четкую фотографию.

Учтите, что именно размер матрицы является ее главной характеристикой. При выборе на него нужно обратить особое внимание.

Читать еще:  Топ-10 самых тонких смартфонов

Что же обеспечивает размер матрицы и почему он является таким важным параметром?

Итак, размер матрицы диктует:

  1. Уровень шума фотографии
  2. Глубину и насыщенность ее цвета
  3. Динамический диапазон
  4. Размер фотокамеры

Больший размер матрицы обеспечивает:

  1. Низкие показатели шума на фотографии. Матрица, имеющая большую поверхность, принимает больше света. Это будет сопряжено с меньшим нагревом, меньшей погрешностью в процессе квантования, соответственно, меньшим уровнем воздействия нежелательных шумов. Чем больше физический размер матрицы, тем меньше посторонних шумов будет на снимке, даже если съемка осуществляется при низком уровне освещения. Если говорить проще, фотография не будет пестрить лишними точками, точно не способствующими эстетике снимка.
  2. Широкий динамический диапазон
  3. Насыщенные, глубокие цвета снимка

Глубина цвета является показателем, который определяет возможность камеры идентифицировать любые метаморфозы цвета, даже самые незначительные. Это особенно ценно для фотографий однотонных пейзажей, не имеющих резких цветовых переходов. Большая матрица способна уловить даже самый незначительный цветовой переход, в то время как маленькая не имеет такой возможности.

Единственный недостаток, с которым придется смириться при выборе большой матрицы, это размер самой камеры. Чем больше матрица, тем больше размер камеры. Строго говоря, это вряд ли можно считать серьезным недостатком, учитывая широкий спектр преимуществ, которые дает матрица большого размера.

Виды матрицы

Он определяет способ работы матрицы.

На этом основании матрицы делят на 2 технологии:

Конечная цель является одинаковой: накопление света. Разница в том, что является элементом, составляющим структуру. В первой технологии это диод, а во второй — транзистор.

Если говорить о качестве фотографий, то плюсом CCD-технологии были более приятные глазу цвета, а CMOS-технология выгодно отличалась гораздо меньшим уровнем шума.

В наше время подавляющее большинство камер оснащено матрицей CMOS.

Чувствительность матрицы

Она является очень важным параметром. Чем большую чувствительность установить, тем больше возможность зафиксировать на фотографии плохо освещенные объекты. Но при таких условиях будут также увеличиваться нежелательные шумы.

Параметр IS0 является эквивалентным показателем чувствительности. 50 — самый низкий показатель чувствительности, при котором чистое фото не подвергается разрушению шумом.

Это параметр, который находится в непосредственной связи с чувствительностью. Он определяет уровень света и шумов на снимке.

Нужно помнить, что любое фото имеет определенный показатель шума. Светочувствительность характеризуется тем же. Она не может иметь статичных показателей. Они будут меняться, и эти изменения зависят от условий съемки.

Даже если свет совсем отсутствует, фотодатчик все равно продемонстрирует в итоге определенное значение. Как раз это и является шумом. Чтобы получить качественную фотографию, сигнал должен побороть помехи на определенном уровне. Это явление и носит название «сигнал-шум».

Чтобы фотография получилась четкой и не имела нежелательных шумов, нужно правильно настроить фильтры, чтобы они не пропустили эти помехи.

Если увеличивать уровень чувствительности матрицы, действие фильтра будет ослабевать, чтобы поймать слабый сигнал. Но одновременно с этим на снимке отразятся и шумы. Поэтому, чтобы не нужно было усиливать чувствительность, необходимо правильно настроить выдержку.

Что нужно сделать, чтобы ослабить помехи?

Чтобы уровень шума был минимальным, необходимо настраивать минимальную чувствительность матрицы. Однако эта возможность напрямую зависит от того, позволяет ли это выдержка камеры.

Если же требуется уменьшать выдержку, то одновременно с этим необходимо увеличивать чувствительность, что в свою очередь приведет к увеличению уровня шума. Определенное значение приведет к тому, что шумы станут видны на снимке. Потому при съемке выбор стоит между уменьшенной чувствительностью и уменьшенным временем выдержки.

Все это говорит в пользу выбора камеры с большим размером матрицы, позволяющего снижать уровень шума и уменьшать выдержку, чтобы снимать объекты в движении без ущерба качеству изображения.

Разрешение матрицы

Этот параметр для многих является очень важным при выборе камеры. Так ли это? Попробуем разобраться.

Размер пикселя является очень важным параметром, и вот почему это так: когда пиксель больше по размеру, он способен «поймать» больше света. Матрица подобного типа будет давать меньшее количество шумов.

Если матрица имеет большее разрешение, то размер пикселей, которые ее составляют, меньше, а это стимулирует нагрев и поднимает уровень шумов.

Отличительные черты размера пикселя:

  1. Уровень шумов. Как уже было сказано выше, меньший размер пикселя предполагает высокий уровень шумов.
  2. Уровень шевеления. Чем меньше размер пикселя, тем выше его чувствительность к дрожанию и смещению камеры.
  3. Высокие требования к объективу камеры. Чем меньше размер пикселя, тем более высокая разрешающая способность объектива потребуется для качественных снимков.
  4. Чем больше разрешение фотоаппарата, тем большие возможности должен иметь компьютер, который будет обрабатывать снимки. Если вы хотите получить от съемки отличный результат, но не занимаетесь фотографированием в RAW, то вам предстоит довольно продолжительная и непростая работа в фоторедакторах на компьютере. А при редактировании снимков в очень высоком разрешении, например, составляющем 24 мегапикселя и выше это и вовсе может стать очень сложной задачей.

Динамический диапазон матрицы

Он устанавливает максимальный диапазон яркости фотографии. Каждый из пикселей, составляющих матрицу, имеет свой уровень яркости. Функцией динамического диапазона является идентификация широты яркого участка снимка, который способен охватить фотоаппарат без ущерба качеству наиболее темных и наиболее ярких частей кадра.

Динамический диапазон является статичной характеристикой матрицы. Его невозможно изменить. Правда, есть возможность сделать его более узким, если повысить чувствительность ISO, но это далеко не всегда сможет решить проблему. Строго говоря, это даже нежелательно.

Когда фотоаппарат не справляется с трудными условиями съемки, например, если снимать нужно против солнца, мы получаем на фотографии слишком сильные контрасты, которые действительно режут глаз. При взгляде на такие фотографии даже непрофессионал вынесет кадру строжайший вердикт и, конечно, будет совершенно прав.

При таких результатах съемки говорят, что динамический диапазон матрицы не справляется с условиями, в которых ведется съемка. Обычно для исправления этих недостатков нужно менять компоновку кадра, прибегать к разного рода профессиональным хитростям, которые сгладят досадные несовершенства, словом, делать все то, что с динамическим диапазоном фотоаппарата совершенно не связано, поскольку, как мы уже упомянули выше, менять его показатели невозможно, поскольку они статичны.

Матрица цифрового фотоаппарата. Принцип работы.

Продолжаю начатый в предыдущей публикации разговор об устройстве цифрового фотоаппарата.

Одним из главных элементов цифрового фотоаппарата, отличающих его от фотоаппаратов пленочных является светочувствительный элемент, так называемый ЭОП или светочувствительная матрица цифрового фотоаппарата. О матрицах фотоаппаратов уже говорилось ранее, теперь же рассмотрим несколько подробнее устройство и принцип работы матрицы, хотя и достаточно поверхностно, чтобы не слишком утомлять читателя.

В настоящее время большинство цифровых фотоаппаратов оснащены ПЗС-матрицами.

ПЗС-матрица. Устройство. Принцип работы.

Рассмотрим в общих чертах устройство ПЗС- матрицы.

Полупроводники, как известно, делятся на полупроводники n-типа и p-типа. В полупроводнике n-типа имеется избыток свободных электронов, а в полупроводнике p-типа избыток положительных зарядов, «дырок» (а следовательно недостаток электронов). На взаимодействии таких двух типов полупроводников и основана вся микроэлектроника.

Так вот, элемент ПЗС-матрицы цифрового фотоаппарата устроен следующим образом. См. Рис.1:

Если не вдаваться в подробности, то ПЗС-элемент или прибор с зарядовой связью, в английской транскрипции: charge-coupled-device – CCD, представляет собой МДП (металл-диэлектрик-полупроводник) конденсатор. Он состоит из подложки p-типа — слоя кремния, изолятора из двуокиси кремния и пластин-электродов. При подаче на один из электродов положительного потенциала, под ним образуется зона обедненная основными носителями — дырками, т. к. они оттесняются электрическим полем от электрода вглубь подложки. Таким образом под данным электродом образуется потенциальная яма, т. е. энергетическая зона благоприятная для перемещения в нее неосновных носителей – электронов. В этой яме накапливается отрицательный заряд. Он может храниться в данной яме достаточно долго из-за отсутствия в ней дырок и, следовательно, причин для рекомбинации электронов.

В светочувствительных матрицах электродами являются пленки поликристаллического кремния, прозрачного в видимой области спектра.

Фотоны падающего на матрицу света попадают в кремниевую подложку, образуя в ней пару дырка-электрон. Дырки, как сказано выше смещаются вглубь подложки, а электроны накапливаются в потенциальной яме.

Накопившийся заряд пропорционален количеству фотонов падающих на элемент, т. е. интенсивности светового потока. Таким образом на матрице создается зарядовый рельеф, соответствующий оптическому изображению.

Далее используется свойство ПЗС-элементов перемещать заряды под действием подаваемых тактовыми импульсами потенциалов на электроды смещения.

Перемещение зарядов в ПЗС-матрице.

В каждом ПЗС-элементе имеется несколько электродов, на которые подаются разные потенциалы.

При подаче на соседний электрод (см. рис. 3) потенциала, большего, чем на данном электроде, под ним образуется более глубокая потенциальная яма, в которую перемещается заряд из первой потенциальной ямы. Таким образом заряд может перемещаться из одной ПЗС-ячейки в другую. Показанный на рис.3 ПЗС-элемент называется трехфазным, бывают еще и 4-х фазные элементы.

Рис.4. Схема работы трехфазного прибора с зарядовой связью – сдвигового регистра.

Для преобразования зарядов в импульсы тока (фототока) используются последовательные регистры сдвига (см. рис.4). Такой регистр сдвига и является строкой ПЗС-элементов. Амплитуда импульсов тока пропорциональна величине передаваемого заряда, и пропорциональна,таким образом, падающему световому потоку. Последовательность импульсов тока, образующихся при считывании последовательности зарядов, затем подается на вход усилителя.

Читать еще:  Топ-10 популярных мотоблоков 2018 года

Линейки близко расположенных друг к другу ПЗС-элементов объединяются в ПЗС-матрицу. Работа такой матрицы основывается на создании и передаче локального заряда в потенциальных ямах, создаваемых электрическим полем.

Заряды всех ПЗС-элементов регистра синхронно перемещаются в соседние ПЗС-элементы. Заряд, который находился в последней ячейке, поступает на выход из регистра, а затем подается на вход усилителя.

На вход последовательного регистра сдвига подаются заряды перпендикулярно расположенных регистров сдвига, которые в совокупности называются параллельным регистром сдвига. Параллельный и последовательный регистры сдвига и составляют ПЗС-матрицу (см. рис.4).

Перпендикулярные к последовательному регистру сдвиговые регистры носят название столбцов.

Перемещение зарядов параллельного регистра строго синхронизовано. Все заряды одной строки смещаются одновременно в соседнюю. Заряды последней строки попадают в последовательный регистр. Таким образом за один рабочий цикл строка зарядов из параллельного регистра попадает на вход последовательного, освобождая место для вновь образуемых зарядов.

Работа последовательного и параллельного регистров синхронизуется тактовым генератором. В состав матрицы цифрового фотоаппарата также входит микросхема, подающая потенциалы на электроды переноса регистров и управляющая их работой.

ЭОП такого типа носит название полнокадровой матрицы (full-frame CCD-matrix). Для его работы необходимо наличие светонепроницаемой крышки, которая сначала открывает ЭОП для экспонирования светом, затем, когда на него попало количество фотонов, необходимое для накопления достаточного заряда в элементах матрицы, закрывает его от света. Такая крышка является механическим затвором, как в пленочных фотоаппаратах. Отсутствие такого затвора приводит к тому, что при перемещении зарядов в сдвиговом регистре ячейки продолжают облучаться светом, добавляя к заряду каждого пиксела лишние электроны, не соответствующие световому потоку данной точки. Это приводит к «размазыванию» заряда, соответственно к искажению получаемого изображения.

Скорость работы такого ЭОПа зависит не только от скорости считывания как с параллельного , так и с последовательного регистров, но еще и наличием механического затвора, который влияет на длительность интервала между экспонированием отдельных кадров.

С целью уменьшения интервала между экспонированием отдельных кадров была разработана матрица с буферизацией кадра.

Здесь была рассмотрена физика восприятия света светочувствительным элементом ПЗС-матрицы, но ничего не говорится о цвете. В принципе ПЗС-элемент воспринимает все цвета почти одинаково (есть некоторая спектральная чувствительность, но об этом позже). Каким же образом с помощью Пзс-элементов создается цветное изображение рассматривается далее.

Предлагаю вам на десерт ролик с изумительной музыкой, в котором представлены армянский дудук и скрипка:

Что собой представляет матрица цифрового фотоаппарата

В каждом современном фотоаппарате есть матрица. Этот фотосенсор является одним из главных компонентов аппаратуры. Она преобразует полученный свет в набор битов и затем в цифровое изображение. Именно она отвечает за цветопередачу, полноту кадра и четкость.

Что собой представляет матрица? Это микросхема с фотодиодами, которые генерируют лучи света и как бы «рисует» картинку. Цвет на изображении появляется благодаря мозаичным фильтрам.

Типы матриц

По технологии считывания и используемым полупроводникам выделяют два основных вида матрицы:

  • Прибор зарядовой связи или ПЗС (CCD);
  • Комплиментарный металл-оксид-полупроводник или КМОП-матрица (CMOS).

Матрица фотоаппарата типа ПЗС имеет невысокую стоимость и постепенно уходит в прошлое. В камерах, оснащенных ей, информация об изображении считывается с каждой ячейки последовательно, поэтому время выдержки значительное. По этой причине делать быстро кадры не получится, а если недостаточно освещения, то придется использовать штатив.

КМОП-матрица фотоаппарата появилась на рынке относительно недавно (2008 год), хотя разработка технологии началась еще в 1993 году. Принцип работы основывается на выборке отдельных пикселей и схож с работой карты памяти. Зачастую полноразмерные матрицы изготовляют именно по этой технологии, так как нет потери низа, верха и боковых границ. Она позволяет делать кадры с малой выдержкой. Сам полупроводник светочувствительный и работает тихо.

ВАЖНО! Основная разница между ПЗС и КМОП – последовательность считывания ячеек. CCD технология позволяет использовать в фотоаппарате автофокус и экспонометр. Последний тип матрицы является более дешевым и потребляет меньше энергии в сравнении с ПЗС.

Live-MOS-матрица фотоаппарата является улучшенной версией КМОП. Имеет небольшое количество соединений, светочувствительная, потребляет немного энергии.

Используется, производиться исключительно компанией «Panasonac». За счет того, что размеры матрицы небольшие, фотоаппараты с ней имеют компактные размеры.

Live-MOS имеет недостатки. Из-за того, что на каждый пиксель выделена отдельная электрическая цепь, на изображении часто появляется шум и возникает перегрев.

Super CCD-матрица камеры имеет пиксели с восьми углами, часть из которых зеленого цвета, маленького и большого размера. Остальные пиксели синего и красного цвета совпадают по размеру с малыми пикселями зеленого цвета. За счет разного размера увеличивается фотографическая широта, а коэффициент заполнения пикселями равняется 100%. Из-за сложного принципа считывания сигнала, камеры с этой матрицей потребляют большое количество энергии и дорого обходятся для производителя.

QuantumFilm. Эти типы матриц фотоаппаратов изготовляются на основе кремния и квантовых точек. Именно последние позволяют захватить световые лучи практически на 100%. Отсюда высокая резкость изображения даже при низкой освещенности. Сенсор за счёт наличия квантовых точек имеет компактные размеры.

Стоит отметить, что человеческий глаз не заметит принципиальных различий между разными матрицами. Главное отличие в них – процесс производства.

Тип матрицы фотоаппарата классифицируют в зависимости от светофильтра:

  • RGB, встречается чаще всего;
  • RGBW, позволяет получить хорошие кадры даже при низкой освещенности;
  • С фильтрами Байера RGBE, имеет много зеленых пикселей, благодаря чему цветность кадра максимально приближена к естественным оттенкам.

RGB расшифровывается как красный – зеленый – синий. На базе смешивания этих трех базовых цветов формируются все остальные.

Приставка «W» означает «белый», то есть светофильтр имеет дополнительный белый фотодиод. На что это влияет? Матрицы, где белых фотодиодов до 50%, сокращают потерю света примерно на 1/3. У камер с RGBW лучшее соотношение шум-сигнал. Недостаток – утрата мелких цветных деталей при нормальном освещении.

Физический размер матрицы

На качество снимком влияет не только тип матрицы, но и ее размер. Обозначается он в дюймах.

Размер матрицы фотоаппарата напрямую зависит от количества и размера пикселей. Размер пикселей зависит от того, какой светочувствительностью он наделен. И чем больше пиксели по размеру, тем больше световых лучей они могут собрать. Соответственно, чем больше матрица, тем меньше шума на снимках и больше светочувствительность.

Полная матрица равна кадру снимка пленочным фотоаппаратом в 35 мм (2,4Х3,6 см) или crop 1. После появления цифровых камер, принцип работы не изменился, только пленку сменила матрица. Но, полномерный фотодатчик имеет большие размеры, вес и производители пошли на уменьшение его размера.

Если размер матрицы фотоаппарата меньше стандартного, то она называется кроп-фактор, в обиходе «камера с кропнутой матрицей». Значение отображает во сколько раз фотодатчик меньше кадра пленки.

ВАЖНО! Размер матрицы фотоаппарата имеет большое значение: объектив с меньшим фотодатчиком обрежет изображение, а если съемка делается полноразмерным, то кадр будет шире и угол обзора больше.

Самые распространенные модели фотоаппаратов имеют кроп-фактор размером 1,3; 1,5; 1.6 и 2, то есть меньше пленочного кадра в 1,3 раза и так далее. Хотя на рынке представлены модели с полноразмерной матрицей и называются они полнокадровыми цифрозеркальными аппаратами.

Размеры матриц фотоаппаратов компактного типа меньше полноценного фотодатчика в 25 раз.

Таблица самых распространенных размеров:

Что собой представляет матрица цифрового фотоаппарата

Ни один фотоаппарат не может обойтись без матрицы. Современные модели оснащаются ей практически поголовно. Так произошло в момент, когда цифровые аналоги начали вытеснять устаревшие пленочные технологии. Матрица фотоаппарата является одним из основных компонентов, без которых невозможна эксплуатация всего прибора в целом, ведь его роль если и не является ключевой, то, по крайней мере, может считаться одной из ведущих. Именно матрица отвечает за качество будущего снимка, цветопередачу, четкость, полноту кадра. Как и другие важные элементы фототехники, матрица обладает рядом основных параметров, на которые обычно принято ориентироваться при выборе той или иной модели.

Типы матриц

Матрица цифрового фотоаппарата – это, в первую очередь, микросхема. Она преобразует световые лучи, которые, преломившись в системе линз и зеркал, попадают на нее. В результате такого преображения получается электрический сигнал, который выводится в цифровом виде, образуя снимок. За весь этот процесс отвечают специальные фотодатчики, расположенные на самой плате. Чем больше количество датчиков, чувствительных к свету, тем больше разрешение, и, как следствие, качество конечного снимка.

Встречаются матрицы следующих типов.

  1. ПЗС – тип матрицы фотоаппарата, который дословно расшифровывается как прибор зарядовой связи. В английском варианте – Charge-Coupled Device. Весьма известная аббревиатура, которая, впрочем, не так часто встречается в наши дни. Многие используют приборы, в основе которых лежат светодиоды, имеющие высокую светочувствительность, созданные на основе ПЗС системы, но, несмотря на широкую распространенность, данный вид микросхем все больше вытесняется более современным.
  2. КМОП-матрица. Формат матрицы, введенный в эксплуатацию в 2008 году. Впрочем, история создания данного формата уходит корнями в далекий 93-й, когда впервые была опробована технология APS. КМОП-матрица – это комплиментарный металл-оксид-полупроводник. Данная технология позволяет производить выборку отдельного пикселя почти так же, как и в стандартной системе памяти, к тому же, каждый пиксель оснащается дополнительным усилителем. Поскольку данная система является более современной, она зачастую оснащается автоматической подстройкой времени экспонирования каждого пикселя по отдельности. Данное улучшение позволяет получить полный кадр без потери боковых границ, а так же без потери верха и низа кадра. Полноразмерная матрица чаще всего бывает выполнена по технологии КМОП.
  3. Существует еще один тип матрицы – Live-MOS-матрица. Ее выпустила фирма «Панасоник». Данная микросхема функционирует при помощи технологии, в основе которых лежит МОП. МОП-матрица позволяет делать качественные профессиональные снимки без высокого уровня шума, а также исключает перегрев.
Читать еще:  Рейтинг лучших утюгов 2019 года

Физический размер матрицы

Размер матрицы фотоаппарата – одна из ее важнейших характеристик. Как правило, его указывают в дюймах в виде дроби. Больший размер подразумевает меньшее количество шумов на конечном снимке. К тому же, чем больше физический размер, тем больше световых лучей способна зарегистрировать матрица. Объем и количество лучей напрямую влияют на качество передачи оттенков и полутонов.

Кроп-фактор — это соотношение размеров кадра пленочного фотоаппарата 35 мм к размерам матрицы цифрового фотоаппарата. Все дело в том, что процесс создания цифровой матрицы довольно дорогостоящий, и поэтому производители постарались максимально сократить ее размер.

Если сравнить фото, сделанное с одним объективом на фотоаппарате с полнокадровой матрицей и фотоаппарате с «кропнутой» матрицей, то в первом случае угол охвата будет больше, и само изображение шире. Получается, что кропнутая матрица обрезает готовую картинку, отсюда и пошло такое название – кроп от англ. crop (резать).

Чаще всего кроп-фактор используют для замера наиболее точного расстояния фокуса у объектива, устанавливая его на различные приборы. Здесь вступает в игру такое понятие, как эквивалентное фокусное расстояние (ЭФР), которое вычисляется путем умножения фокусного расстояния (ФР) на кроп-фактор. Так, объектив с полнокадровой матрицей (кроп=1) и объективом с ФР 50 мм зафиксирует такое же по размерам изображение, как и кропнутая матрица 1,6 с объективом с ФР 30 мм. В этом случае можно сказать, что ЭФР у этих объективов одинаковое. Ниже приведена таблица, в которой можно провести сравнение, как меняется ЭФР в зависимости от кроп-фактора.

Количество мегапикселей и разрешение матрицы

Матрица сама по себе является дискретной. Она состоит более чем из миллиона элементов, которые и преобразовывают световой поток, идущий от линз. В характеристике каждой модели фотоаппарата можно отыскать такой параметр матричной платы как количество светочувствительных элементов или разрешение матрицы, измеряемое в мегапикселях.

Один мегапиксель равен одному миллиону светочувствительных датчиков, улавливающих преломленные в линзах лучи. Разумеется, чем этот параметр будет больше, тем лучший снимок получится сделать.

Правда, здесь есть и обратная зависимость. Если физический размер матрицы меньше, то и количество мегапикселей должно быть пропорционально меньше, в противном случае не удастся избежать эффекта дифракции: фотографии будут замыленными, без четкости.

Чем больше размер пикселя, тем больше он способен зафиксировать лучей, падающих на него. Размер пикселей напрямую связан с размерами матрицы, и влияет, в основном, на широту кадра. Чем больше количество мегапикселей с правильным соотношением размеров матрицы, тем больше лучей света смогу уловить датчики. Количество зафиксированных лучей напрямую влияет на исходные параметры преобразуемого материала: резкость, цветность, объем, контрастность, фокус.

Таким образом, разрешение фотокамеры влияет на качество снимка. Зависимость разрешения от объема использующихся пикселей очевидна. В объективе при помощи сложной расстановки оптических элементов формируется необходимый световой поток, который потом матрица поделит на пиксели. Оптические приборы тоже обладают собственным разрешением. Более того, если разрешение объектива достаточно мало, а передача двух светящихся точек, разделяемых одной темной, происходит как единого целого, то разрешение будет не столь отчетливо выделяться. Происходит это именно из-за прямой зависимости и привязки к числу мегапикселей.

Важно: на качественный снимок влияет как параметр разрешения матрицы, так и разрешение оптики объектива. Измеряется оно количество линий на 1 мм. Своего максимального значения разрешение достигает, когда оба показателя — и матрица, и объектив — соответствуют друг другу.

Если говорить о разрешении современных цифровых микросхем, то оно складывается из размера пикселя (от 2 до 8 мкм). На сегодняшний день на рынке представлены модели с показателями до 30 мп.

Светочувствительность

В фотоаппаратах по отношению к матрице принято использовать термин эквивалентной чувствительности. Связано это с тем, что подлинную чувствительность можно измерять различными способами в зависимости от множества параметров матрицы. Зато, применив усиление сигнала и цифровую обработку, пользователь может обнаружить высокие пределы чувствительности.

Параметры светочувствительности демонстрируют возможность исходного материала преобразовываться из электромагнитных воздействий потока света в электрический двоичный сигнал. Проще говоря, показывать, сколько требуется света для получения объективного уровня электрического импульса на выходе.

Параметр чувствительности (ISO) чаще всего используется фотографами для демонстрации возможности съемки в условиях плохого освещения. Увеличение чувствительности в параметрах прибора позволяет улучшить качество конечного снимка при необходимом значении диафрагмы и выдержки. ISO может достигать значения от нескольких десятков до тысяч и десятков тысяч единиц. Негативной стороной высоких значений светочувствительности является появление «шумов», которые проявляются в виде эффекта зернистости кадра.

Как проводить чистку матрицы в домашних условиях

Битые пиксели не всегда могут быть таковыми на самом деле. В действительности, когда происходит смена объектива, на матрицу могут попасть частицы мусора, вызывающие эффект «битого пикселя». Чистка матрицы фотоаппарата нужна для профилактики этого эффекта, а также для более комфортной работы с прибором.

Со временем, в особенности, если устройство эксплуатируется подолгу в различных погодных условиях, матрица может покрыться слоем пыли. При нарушении герметичности в области крепления объектива на поверхность может попасть небольшое количество влаги, что тоже может негативно сказаться на качестве кадра. Чистку можно доверить профессионалам из сервисного центра, а можно провести и самостоятельно, в домашних условиях.

Важно не забывать, что помещение, в котором будет происходить процедура, должно быть как можно менее пыльным, без сильных сквозняков. Прежде чем приступать к самой процедуре, необходимо убедиться, что аккумуляторная батарея заряжена.

Первый и самый простой способ очистки стеклянной поверхности кремниевой пластины микросхемы – сдувание пыли. Для этого следует использовать самую обычную грушу для чистки объективов, она продается в любом крупном магазине бытовой техники. К сожалению, использование груши помогает только при снятии легкого налета небольших песчинок пыли. Для более крупных частиц, которые могли прилипнуть к поверхности, может потребоваться что-то более основательное.

Если груша не помогла справиться с пятнами на матрице, можно попробовать использовать специальный набор для очистки стеклянной поверхности. Стоит он несколько дороже, но эффективность очистки значительно выше.

  1. Первый пункт в очистке – использование специального пылесоса. Его сборка не занимает много времени и детально описана в инструкции к набору. На конце устройства находится мягкий наконечник, так что повреждение прибора во время работы исключено. Лучше всего будет прочистить при помощи пылесоса не только стеклянную поверхность, но и все скрытые полости, доступные для чистки.
  2. После уборки при помощи пылесоса можно начинать влажную уборку. Она осуществляется при помощи специальных щеточек, одна из которых влажная, другая сухая. Этот вид уборки нужен для пылинок, которые, будучи мокрыми, попали на поверхность стекла, и, высохнув, прикрепились к нему, создав эффект «битого пикселя». Влажная щетка пропитана специальным раствором, который эффективно удаляет засохшие песчинки и пылинки, не оставляя пятен и разводов. Необходимо проводить по стеклу плавными аккуратными движениями, лишь слегка нажимая на саму щетку. Оставшаяся влага довольно быстро испарится сама. Даже если после влажной уборки на стекле остается пара капель, то они прекрасно удаляются сухой щеточкой (кисточкой).
  3. Третий этап – финальный, проводим сухой щеточкой по матрице и убеждаемся, что она чистая.

После очистки можно попробовать сделать тестовый снимок, чтобы убедиться, что процедура прошла успешно. Для этого необходимо закрыть диафрагму до максимального значения и сделать снимок чистого белого листа, приведя объектив в состояние полной расфокусировки. Затем сравнить качество снимков до и после.

Почистить матрицу зеркального фотоаппарата довольно просто, для этого не требуется каких-то глубоких знаний или большого опыта, достаточно желания, немного терпения и знания базовых принципов очистки высокоточной оптической техники.

Заключение

Матрица фотоаппарата является важнейшей деталью любой современной зеркалки. Без нее невозможно сделать снимок, а от ее параметров зависит дальнейшее использование устройства. Если параметры матрицы выбраны неправильно, фотоаппарат не будет оптимально справляться со своими задачами. Матрица не требует какого-то дополнительного ухода, кроме периодической чистки стеклянной поверхности.

Следует отметить, что светочувствительные датчики очень хрупкие и плохо переживают падение прибора даже с небольшой высоты, поэтому эксплуатировать фотоаппарат рекомендуется с максимальной осторожностью и аккуратностью.

Ссылка на основную публикацию
Adblock
detector